DR系统的成像原理

来源:美康体检车发表于:2016-5-31

按成像原理DR主要分为两大类(1)直接数字化平板探测器技术(2)间接数字化平板探测器技术,后者又根据光电转换方式的不同分为TFT及CCD两种转换方式。
直接数字化是指可将X射线直接转变为荷。闪烁体是一种吸收X线并能把能量转换为可见光的化合物。好的闪烁体使每个X线光子可以产生许多个可见光光子,每1kV X线输出20-50个可见光光子。闪烁体通常是由高原子序数的物质组成,高原子序数的物质有高的X线接收能力,和一个低浓度的催化剂,它直接把光谱转换为可见光光子散射,并通过直射式的光学系统将X线所致可见光传送到采集电路层,读出各个像素(135μm)产生的信号,按16bit量化为数字信号,直接送至计算机。
间接数字化采用类似屏一片系统产生图像所有的间接方式,在传统的荧片系统中,X射线形成影像分两步完成。第一步X射线经过增感屏中含有稀土元素磷的材料(比如Gd2O2S)产生可见光;第二步可见光使胶征中的溴化银颗粒感光产生影像,由于有可见光产生,就会产生光的散射,最终降低图像质量。间接数字化平板探测器分两步完成工作。第一上X射线经过闪烁体(碘化铯或磷)产生可见光,第二步可见光经光电转换由TFT或CCD转变为电荷。由于工艺的改进,新一代闪烁体材料制作成“松针”状种植在非晶硅上,比传统整块闪烁体材料产生的散射要少一些,但根本性质没有改变,仍需产生可见光进行转换,有可见光必然会有光的散射,必然会造成图像质量的下降。

最终图像及空间分辨率主要取决于象素的大小以及产生的数字信号的波形(singnal profile),间接数字化技术由于光的散射及噪声过大,造成信号的波形宽大,不能产生精确的数字矩形波。直接数字化技术,由于无光的散射以及噪声低,所以产生的数字信号波形锐利,是精确的矩形数字波(数字信号由0.1构成,产生的是矩形波)。
无论直接或间接数字化平板探测器,在电荷读取方式上是共同的,即“直接读取”,它与“直接转换”是两个不同的概念,因为后者是平板探测器的共性,也是为什么平板探测器数字图像动态范围宽的物理机制。