【技术】DR 技术与应用[转帖]

来源:美康体检车发表于:2016-5-16

DR 全称 Digital Radiography。DR 与 CR 是两种完全不同的技术,不要搞混了。所谓 DDR 就是 DR, 是某厂家产品的名称,不是什么特殊技术。
首先先了解什么是 CR。CR 全称 Computed Radiography。其技术是利用原有 X-光设备,换上特殊的胶片暗合和“胶片” (即所谓 IP 板) 和 “胶片机” (即 CR 机)。因此所有操作过程基本不变。 Fuji 有不需要操作暗合的 CR,但是还是先用 IP 板曝光再读取。
DR 完全不同 -- 没有任何“胶片” 和“胶片机"。拍出来的图像直接在计算机上显示出来,没有任何“胶片” 操作。DR 有两种装配方式:
1. 全套设备 -- 把现有 X-光设备扔了,换上全套 DR (包括球管、床、DR 板、计算机等)。
2. 留着现有 X-光设备,将装暗合的机关 (bucky) 卸了,装上 DR 板和计算机
DR 技术的核心在 X-线探测平板和采像处理计算机。DR 平板 (flat panel) 有三种技术:
1. a-Si (一种硅平板探测器) -- 目前世界上主要领先厂家都用这种技术,包括 GE、西门子、飞利浦、柯达等。国内万东也引进了这种技术。
2. a-Se (非晶硒平板探测器) -- 目前世界上只有 Hologic 一个家用此技术,Agfa、国内友通等厂家 OEM 这种探测器。
3. CCD -- 世界上还有几个厂家用此技术如 Swissray (DDR 也许是他们叫起来的)
他们的目的是相同 -- 即不用中间介质直接拍出数字 X-光像。专家们普遍认为大面积平板采像 CCD 技术不胜任。剩下两种技术各有优越性:
1. a-Si 平板是两步数字转换过程,X-光粒子先变成可见光然后用光电管探测。医生们觉得出来图像比较好看。
2. a-Se 是在一种所谓直接探测过程,X-光子在硒涂料层变成电信号被探测。厂家 (Hologic) 认为没有转换能量损失,是发展方向 (但是 GE、西门子、飞利浦不同意)。
我本人觉得以上两种技术会共存相当一段时间。世界上做成熟 DR 探测器的原厂家只有几个,据我所知都在美国。Hologic 的 DirectRay 技术是购买了 Direct Radiography Corp 后取得的。有些大厂家买 Trixell 这个法国公司的平板,这家公司用的是一个美国公司的平板原料。 有些厂家 (如万东) 买 Varian 的平板,Varian 也是用了同一厂家的原料,但是 Varian 平板视野太小。GE 投资了大笔资金开发自己的平板。
成本上 CR 与 DR 的最大不同点是几台常规 X-光机可以共用 1、2 台 CR 机。DR 则是一台配一个昂贵的 DR 探测器。要注意另一个成本,CR 的 IP 板是个耗材,照了一定张数要换。
一台 DR 价钱不低,美元二十几万。DR 比常规 X-光 (包括配了 CR 的) 理论出产量大 2-3 倍,但是一个医院往往要两台 (一台胸片、一台常规),加起来美元 4-5 十万。 小医院病人流量不大的可以看看友通的多用途 DR。
因为 DR 探测器视野大小是固定的,不像常规 X-光 (包括配 CR 的) 可以靠换不同尺寸的暗合+胶片来调整,买 DR 时要特别注意最大视野尺寸。有 17” x 17" 最理想,14" x 17" 也行。小了照胸片时会出现切掉肩膀和手臂的现象。
另外听说国内中兴航天在生产一种 DR,用的是俄罗斯一维 a-Se 直接转换探测技术。一维要起到平板的功能就要做机械扫描运动。据说这种设备有造价相对平板技术更低廉的优点,但也存在成像时间长(数秒)、空间分辨率低(刚推出时是1mm/lp)以及X线使用效率低的缺点。
DR 探测器技术
对于数字化X射线摄影 ( DR ) 技术来讲,决定其图像质量不仅仅是平板所采用的技术类型,同时还有平板的 DQE 和MTF、采集矩阵、采集灰阶、空间分辨率、最小像素尺寸等重要因素构成。
探测量子效率DQE ( Detective Quantum Efficiency ) 是输入信号转导成输出信号的效率,高探测量子效率是潜在剂量降低的基础。数字平板探测板都具有的特性是相对于屏-片X线摄影都有较高的 DQE ,目前很多公司公布的 DQE 过于集中在低端、低空间分辨率时的 DQE 。在低空间分辨率时,非晶硒的DQE比非晶硅的低,但随着空间分辨率的增加,非晶硒 DQE 实际上大于非晶硅,虽然它仍然是减小的,但是减小的不快,所以非晶硒在检测细节方面的能力较强。
平板探测器的采集灰阶基本上都是 14 Bit 、16,384 灰阶,只有 Canon 等少数公司的探测板为原始图像为 12 Bit 、4,096 灰阶, A/D 转换为14Bit。
在相同的图像尺寸时,采集矩阵越大,像素尺寸越小,图像分辨率越高,细小组织结构才能更好显示。目前,非晶硒14×17寸大面积探测器最小达到139 um2 ( 新医科技, Hologic ),非晶硅 17 寸大面积探测板最小为 143 um2 ( Trixell )。
(一) 间接能量转换
平板探测器的结构由闪烁体或荧光体层涂上有光电二极管作用的非晶硅层 (amorphous Silicon,a-Si) 再加TFT (Thin Film Transistor) 阵列或 CCD (Charge Coupling Device) 、或CMOS (Complementary Metal Oxide Semi-Conductor) 构成。间接数字化平板探测器亦分两步完成工作:第一步,X射线经过闪烁晶体(碘化铯或磷)产生可见光;第二步,可见光经光电转换由TFT D转变为电荷。由于需产生可见光进行转换,有可见光必然会有光的散射,必然会造成图像质量的下降,由于工艺的改进,新一代闪烁晶体材料制作成“松针”状种植在非晶硅上,虽然比传统整块闪烁体材料产生的散射要少一些,但根本性质没有改变,仍需产生可见光进行转换,有可见光必然会有光的散射,必然会造成图像质量的下降。
1、碘化铯 ( CsI ) + a-Si + TFT :当有 X 射线入射到 CsI 闪烁发光晶体层时,X 射线光子能量转化为可见光光子发射,可见光激发光电二极管产生电流, 这电流就在光电二极管自身的电容上积分形成储存电荷. 每个象素的储存电荷量和与之对应范围内的入射 X 射线光子能量与数量成正比。发展此类技术的有法国 Trixell 公司解像度 143um2 探测器 ( SIEMENS、Philips、汤姆逊合资 ) 、美国 GE 解像度 200um2 探测器 ( 收购的 EG & G 公司 ) 等。其原理见右图。Trixell公司(目前有西门子、飞利浦、万东、上医厂、长青、泛太平洋等厂家使用,成本约9.5万美金) 用的是Csl柱状晶体结构的闪烁体涂层,此种结构可以减少可见光的闪射,但由于工艺复杂难以生成大面积平板,所以采用四块小板拼接成17″×17″大块平板,拼接处图像由软件弥补。 GE、佳能(佳能、东芝、岛津使用)的平板是使用Csl或Gd2O2S:Tb涂层,因不是柱状晶体结构,所以能量损失较Trixell 严重。 2、硫氧化钆 ( Gd2O2S ) + a-Si + TFT :利用増感屏材料硫氧化钆 ( Gd2O2S ) 来完成 X 射线光子至可见光的转换过程。发展此类技术的公司有美国瓦里安公司、日本 Canon 公司解像度 160um2 探测器等。 此类材料制造的 TFT 平板探测器成像快速、成本较低,但一般灰阶动态范围较低(12 bit 以下),与其它高阶14 bit产品图像诊断质量相比较为不足。3、碘化铯 ( CsI ) / 硫氧化钆 ( Gd2O2S ) + 透镜 / 光导纤维 + CCD / CMOS :X射线先通过闪烁体或荧光体构成的可见光转换屏,将X射线光子变为可见光图像,而后通过透镜或光导纤维将可见光图像送至光学系统,由CCD采集转换为图像电信号。发展此技术的有SwissRay、Wuestec、新医科技等公司。其原理可见右图。新医科技的CCD DR为2K×2K,12Bit图像输出,无论在图像上还是在价格上均是取代CR的最佳产品。
4、CsI ( Gd2O2S ) + CMOS :此类技术受制于间接能量转换空间分辨率较差的缺点,虽利用大量低解像度 CMOS 探头组成大面积矩阵,尚无法有效与 TFT 平板优势竞争。发展此类技术的公司有CaresBuilt、Tradix公司等。
(二) 直接能量转换
直接能量转换 TFT 平板 DDR ( Direct Digital ) 探测器的结构主要由非晶硒层 ( Amorphous Selenium,a-Se ) 加薄膜半导体阵列 ( Thin Film Transistor array,TFT ) 构成。入射的 X 射线光子在硒层中产生电子空穴对,在外加偏压电场作用下,电子和空穴对向相反的方向移动形成电流,电流在薄膜晶体管中积分成为储存电荷。每一个晶体管的储存电荷量对应于入射的 X 射线光子的能量与数量。材料非晶硒的是不产生可见光,而只是电子的传导,没有散、折射线产生的能量损失。
早期的非晶硒平板存在的缺陷包括温度适应性差以及成像速度慢。发展此类技术的公司有收购了 DRC 公司的 Hologic 公司和和台湾新医科技。目前在国内我们最熟悉的平板为美国公司Hologic( Hologic、柯达、珠海友通、沈阳东软、北京东健等公司使用 )生产非晶硒平板,由于直接能量转换图像质量极佳,深受医生的喜爱。但由于 Hologic 目前平板对温度等环境要求较为严苛稳定性不够好,容易被冻坏出现坏点(据说国内已有用户平板出现坏点),成像时间慢需10 秒以上(由于使用的Readout电子电路设计老式,数据读出慢)。
新医科技 , 联同众多技术创新合作伙伴,在DDR技术领域的主要突破推出新一代非晶硒探测板在技术上取得重大进展,改变早期非晶硒探测板对温度环境敏感和成像速度慢的缺点,实现工作环境温度 5℃ - 40℃ 和快速 3 - 5 秒成像,同时也成功开发出世界唯一直接能量转换便携式 ( Portable DDR ) ,可搭配床边机,实现了以前 DR 无法做到的灵活性及床边摄片的需求。
同时新医科技在Detector Housing 内置独家专利“反馈热控制”设计的新型感测盒能抵御严苛的温度环境变化(-10℃ - 50℃), 保护探测板稳定性和寿命,保证图像质量。
专业普放升级方案提供科室以有限的资金条件,对现有设备进行量身定做 DDR升级。

线扫描技术
1、由于采用狭缝式线扫描技术和高灵敏度的线阵探测器。球管发出的平面扇形 X 射线束穿过人体到达探测器,得到一行信号数据,在扫描机构的帮助下,球管和探测器平行自上而下匀速移动,逐行扫 描,将一行行的数据经过计算机处理、重建后就得到一幅平面数字图像。采用此类技术的有我国的中兴航天公司。
2、采用条状 CCD 结构的探测器技术,由将 X 光子转换为可见光的闪烁体和四片 CCD 构成,利用线扫描方式完成数据收集。 发展此类技术的有 Fisher 公司。
对于线性扫描技术来讲普遍存在的缺点是曝光时间过长,像素矩阵、空间分辨率等指标都不高等,已趋向于淘汰。
非晶硒的成像时间较长(获取影像)
感觉非晶硅和CR差不多,都要经过两次转换
总的说来
DR和CR差距不大 至少分辨率差别小
DR优势在于:
1.成像速度比cr快
2.流程简化
3.剂量降低了